Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Investig Med ; 71(5): 459-464, 2023 06.
Article in English | MEDLINE | ID: covidwho-2243232

ABSTRACT

We previously developed and validated a model to predict acute kidney injury (AKI) in hospitalized coronavirus disease 2019 (COVID-19) patients and found that the variables with the highest importance included a history of chronic kidney disease and markers of inflammation. Here, we assessed model performance during periods when COVID-19 cases were attributable almost exclusively to individual variants. Electronic Health Record data were obtained from patients admitted to 19 hospitals. The outcome was hospital-acquired AKI. The model, previously built in an Inception Cohort, was evaluated in Delta and Omicron cohorts using model discrimination and calibration methods. A total of 9104 patients were included, with 5676 in the Inception Cohort, 2461 in the Delta cohort, and 967 in the Omicron cohort. The Delta Cohort was younger with fewer comorbidities, while Omicron patients had lower rates of intensive care compared with the other cohorts. AKI occurred in 13.7% of the Inception Cohort, compared with 13.8% of Delta and 14.4% of Omicron (Omnibus p = 0.84). Compared with the Inception Cohort (area under the curve (AUC): 0.78, 95% confidence interval (CI): 0.76-0.80), the model showed stable discrimination in the Delta (AUC: 0.78, 95% CI: 0.75-0.80, p = 0.89) and Omicron (AUC: 0.74, 95% CI: 0.70-0.79, p = 0.37) cohorts. Estimated calibration index values were 0.02 (95% CI: 0.01-0.07) for Inception, 0.08 (95% CI: 0.05-0.17) for Delta, and 0.12 (95% CI: 0.04-0.47) for Omicron cohorts, p = 0.10 for both Delta and Omicron vs Inception. Our model for predicting hospital-acquired AKI remained accurate in different COVID-19 variants, suggesting that risk factors for AKI have not substantially evolved across variants.


Subject(s)
Acute Kidney Injury , COVID-19 , Humans , SARS-CoV-2 , Acute Kidney Injury/epidemiology , Hospitals
3.
Kidney Med ; 4(6): 100463, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1778504

ABSTRACT

Rationale & Objective: Acute kidney injury (AKI) is common in patients hospitalized with COVID-19, but validated, predictive models for AKI are lacking. We aimed to develop the best predictive model for AKI in hospitalized patients with coronavirus disease 2019 and assess its performance over time with the emergence of vaccines and the Delta variant. Study Design: Longitudinal cohort study. Setting & Participants: Hospitalized patients with a positive severe acute respiratory syndrome coronavirus 2 polymerase chain reaction result between March 1, 2020, and August 20, 2021 at 19 hospitals in Texas. Exposures: Comorbid conditions, baseline laboratory data, inflammatory biomarkers. Outcomes: AKI defined by KDIGO (Kidney Disease: Improving Global Outcomes) creatinine criteria. Analytical Approach: Three nested models for AKI were built in a development cohort and validated in 2 out-of-time cohorts. Model discrimination and calibration measures were compared among cohorts to assess performance over time. Results: Of 10,034 patients, 5,676, 2,917, and 1,441 were in the development, validation 1, and validation 2 cohorts, respectively, of whom 776 (13.7%), 368 (12.6%), and 179 (12.4%) developed AKI, respectively (P = 0.26). Patients in the validation cohort 2 had fewer comorbid conditions and were younger than those in the development cohort or validation cohort 1 (mean age, 54 ± 16.8 years vs 61.4 ± 17.5 and 61.7 ± 17.3 years, respectively, P < 0.001). The validation cohort 2 had higher median high-sensitivity C-reactive protein level (81.7 mg/L) versus the development cohort (74.5 mg/L; P < 0.01) and higher median ferritin level (696 ng/mL) versus both the development cohort (444 ng/mL) and validation cohort 1 (496 ng/mL; P < 0.001). The final model, which added high-sensitivity C-reactive protein, ferritin, and D-dimer levels, had an area under the curve of 0.781 (95% CI, 0.763-0.799). Compared with the development cohort, discrimination by area under the curve (validation 1: 0.785 [0.760-0.810], P = 0.79, and validation 2: 0.754 [0.716-0.795], P = 0.53) and calibration by estimated calibration index (validation 1: 0.116 [0.041-0.281], P = 0.11, and validation 2: 0.081 [0.045-0.295], P = 0.11) showed stable performance over time. Limitations: Potential billing and coding bias. Conclusions: We developed and externally validated a model to accurately predict AKI in patients with coronavirus disease 2019. The performance of the model withstood changes in practice patterns and virus variants.

4.
BMC Nephrol ; 23(1): 50, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1666634

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a common complication in patients hospitalized with COVID-19 and may require renal replacement therapy (RRT). Dipstick urinalysis is frequently obtained, but data regarding the prognostic value of hematuria and proteinuria for kidney outcomes is scarce. METHODS: Patients with positive severe acute respiratory syndrome-coronavirus 2 (SARS-CoV2) PCR, who had a urinalysis obtained on admission to one of 20 hospitals, were included. Nested models with degree of hematuria and proteinuria were used to predict AKI and RRT during admission. Presence of Chronic Kidney Disease (CKD) and baseline serum creatinine were added to test improvement in model fit. RESULTS: Of 5,980 individuals, 829 (13.9%) developed an AKI during admission, and 149 (18.0%) of those with AKI received RRT. Proteinuria and hematuria degrees significantly increased with AKI severity (P < 0.001 for both). Any degree of proteinuria and hematuria was associated with an increased risk of AKI and RRT. In predictive models for AKI, presence of CKD improved the area under the curve (AUC) (95% confidence interval) to 0.73 (0.71, 0.75), P < 0.001, and adding baseline creatinine improved the AUC to 0.85 (0.83, 0.86), P < 0.001, when compared to the base model AUC using only proteinuria and hematuria, AUC = 0.64 (0.62, 0.67). In RRT models, CKD status improved the AUC to 0.78 (0.75, 0.82), P < 0.001, and baseline creatinine improved the AUC to 0.84 (0.80, 0.88), P < 0.001, compared to the base model, AUC = 0.72 (0.68, 0.76). There was no significant improvement in model discrimination when both CKD and baseline serum creatinine were included. CONCLUSIONS: Proteinuria and hematuria values on dipstick urinalysis can be utilized to predict AKI and RRT in hospitalized patients with COVID-19. We derived formulas using these two readily available values to help prognosticate kidney outcomes in these patients. Furthermore, the incorporation of CKD or baseline creatinine increases the accuracy of these formulas.


Subject(s)
Acute Kidney Injury/etiology , COVID-19/complications , Hematuria/diagnosis , Proteinuria/diagnosis , Urinalysis/methods , Acute Kidney Injury/ethnology , Acute Kidney Injury/therapy , Aged , Area Under Curve , COVID-19/ethnology , Confidence Intervals , Creatinine/blood , Female , Hospitalization , Humans , Longitudinal Studies , Male , Middle Aged , Predictive Value of Tests , Renal Insufficiency, Chronic/diagnosis , Renal Replacement Therapy/statistics & numerical data
5.
Transplant Proc ; 53(8): 2451-2467, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1347841

ABSTRACT

BACKGROUND: Kidney transplant recipients with coronavirus disease 2019 (COVID-19) are at increased risk for adverse outcomes, such as acute kidney injury (AKI), intensive care unit (ICU) admission, and death. The association of inflammatory biomarkers with outcomes and the impact of changes in immunosuppression on biomarker levels are unknown. METHODS: We investigated factors associated with a composite of AKI, ICU admission, or death, and whether immunosuppression changes correlated with changes in inflammatory biomarkers and outcomes in kidney transplant recipients with a positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction. RESULTS: Of 59 patients, 50% had estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2. Patients who discontinued calcineurin inhibitors (CNIs) had higher peak high-sensitivity C-reactive protein (hs-CRP) than those who maintained the same dose (median, 344; interquartile range [IQR], 145-374 vs median, 41; IQR, 22-116 mg/L, P = .03). Of the patients, 73% were hospitalized, 22% had admissions to the ICU, and 20% died. Of the 56% with AKI, 35% required dialysis. All patients with AKI but without pulmonary manifestations recovered to 10% of baseline creatinine levels. Factors associated with the composite outcome were eGFR <60 mL/min/1.73 m2 (odds ratio [OR], 5.833; 95% confidence interval [CI], 1.880-18.099; P = .002), hs-CRP (OR, 1.011/unit increase; 95% CI, 1.002-1.021; P = .019), white blood cell count (OR, 1.173/unit increase; 95% CI, 1.006-1.368; P = .041), and decreased or discontinued CNI (OR, 4.286; 95% CI, 1.353-13.572; P = .013). eGFR<60 mL/min/1.73 m2 (OR, 11.176; 95% CI, 1.581-79.001; P = .016), and peak hs-CRP (OR, 1.010/unit increase; 95% CI, 1.000-1.020; P = .049) remained associated with the composite in the multivariable model. CONCLUSIONS: Kidney transplant recipients with COVID-19 have high rates of ICU admissions, AKI, and death. Those with eGFR<60 mL/min/1.73 m2 are at highest risk. CNI reduction is associated with higher inflammatory biomarkers, correlating with worse outcomes. More studies are needed to determine if this association should drive clinical management.


Subject(s)
COVID-19 , Immunosuppression Therapy , Kidney Transplantation , Acute Kidney Injury/virology , Adult , Aged , Biomarkers , COVID-19/complications , Female , Humans , Kidney Transplantation/adverse effects , Male , Middle Aged , Retrospective Studies , Transplant Recipients , United States
6.
J Am Heart Assoc ; 10(12): e020910, 2021 06 15.
Article in English | MEDLINE | ID: covidwho-1263974

ABSTRACT

Background Emerging evidence links acute kidney injury (AKI) in patients with COVID-19 with higher mortality and respiratory morbidity, but the relationship of AKI with cardiovascular disease outcomes has not been reported in this population. We sought to evaluate associations between chronic kidney disease (CKD), AKI, and mortality and cardiovascular outcomes in patients hospitalized with COVID-19. Methods and Results In a large multicenter registry including 8574 patients with COVID-19 from 88 US hospitals, data were collected on baseline characteristics and serial laboratory data during index hospitalization. Primary exposure variables were CKD (categorized as no CKD, CKD, and end-stage kidney disease) and AKI (classified into no AKI or stages 1, 2, or 3 using a modification of the Kidney Disease Improving Global Outcomes guideline definition). The primary outcome was all-cause mortality. The key secondary outcome was major adverse cardiac events, defined as cardiovascular death, nonfatal stroke, nonfatal myocardial infarction, new-onset nonfatal heart failure, and nonfatal cardiogenic shock. CKD and end-stage kidney disease were not associated with mortality or major adverse cardiac events after multivariate adjustment. In contrast, AKI was significantly associated with mortality (stage 1 hazard ratio [HR], 1.72 [95% CI, 1.46-2.03]; stage 2 HR, 1.83 [95% CI, 1.52-2.20]; stage 3 HR, 1.69 [95% CI, 1.44-1.98]; versus no AKI) and major adverse cardiac events (stage 1 HR, 2.17 [95% CI, 1.74-2.71]; stage 2 HR, 2.70 [95% CI, 2.07-3.51]; stage 3 HR, 3.06 [95% CI, 2.52-3.72]; versus no AKI). Conclusions This large study demonstrates a significant association between AKI and all-cause mortality and, for the first time, major adverse cardiovascular events in patients hospitalized with COVID-19.


Subject(s)
COVID-19/mortality , Cardiovascular Diseases/mortality , Renal Insufficiency, Chronic/mortality , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/therapy , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/therapy , Cause of Death , Female , Hospitalization , Humans , Male , Middle Aged , Prognosis , Registries , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/therapy , Risk Assessment , Risk Factors , Time Factors , United States
7.
Ann Intern Med ; 174(5): 622-632, 2021 05.
Article in English | MEDLINE | ID: covidwho-1049179

ABSTRACT

BACKGROUND: Hypercoagulability may be a key mechanism of death in patients with coronavirus disease 2019 (COVID-19). OBJECTIVE: To evaluate the incidence of venous thromboembolism (VTE) and major bleeding in critically ill patients with COVID-19 and examine the observational effect of early therapeutic anticoagulation on survival. DESIGN: In a multicenter cohort study of 3239 critically ill adults with COVID-19, the incidence of VTE and major bleeding within 14 days after intensive care unit (ICU) admission was evaluated. A target trial emulation in which patients were categorized according to receipt or no receipt of therapeutic anticoagulation in the first 2 days of ICU admission was done to examine the observational effect of early therapeutic anticoagulation on survival. A Cox model with inverse probability weighting to adjust for confounding was used. SETTING: 67 hospitals in the United States. PARTICIPANTS: Adults with COVID-19 admitted to a participating ICU. MEASUREMENTS: Time to death, censored at hospital discharge, or date of last follow-up. RESULTS: Among the 3239 patients included, the median age was 61 years (interquartile range, 53 to 71 years), and 2088 (64.5%) were men. A total of 204 patients (6.3%) developed VTE, and 90 patients (2.8%) developed a major bleeding event. Independent predictors of VTE were male sex and higher D-dimer level on ICU admission. Among the 2809 patients included in the target trial emulation, 384 (11.9%) received early therapeutic anticoagulation. In the primary analysis, during a median follow-up of 27 days, patients who received early therapeutic anticoagulation had a similar risk for death as those who did not (hazard ratio, 1.12 [95% CI, 0.92 to 1.35]). LIMITATION: Observational design. CONCLUSION: Among critically ill adults with COVID-19, early therapeutic anticoagulation did not affect survival in the target trial emulation. PRIMARY FUNDING SOURCE: None.


Subject(s)
Anticoagulants/administration & dosage , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/virology , COVID-19/complications , Aged , Anticoagulants/adverse effects , Blood Coagulation Disorders/mortality , COVID-19/mortality , Critical Illness , Female , Hemorrhage/chemically induced , Hemorrhage/mortality , Hemorrhage/virology , Humans , Intensive Care Units , Male , Middle Aged , SARS-CoV-2 , Survival Rate , United States/epidemiology , Venous Thromboembolism/drug therapy , Venous Thromboembolism/mortality , Venous Thromboembolism/virology
8.
J Am Soc Nephrol ; 32(1): 161-176, 2021 01.
Article in English | MEDLINE | ID: covidwho-966902

ABSTRACT

BACKGROUND: AKI is a common sequela of coronavirus disease 2019 (COVID-19). However, few studies have focused on AKI treated with RRT (AKI-RRT). METHODS: We conducted a multicenter cohort study of 3099 critically ill adults with COVID-19 admitted to intensive care units (ICUs) at 67 hospitals across the United States. We used multivariable logistic regression to identify patient-and hospital-level risk factors for AKI-RRT and to examine risk factors for 28-day mortality among such patients. RESULTS: A total of 637 of 3099 patients (20.6%) developed AKI-RRT within 14 days of ICU admission, 350 of whom (54.9%) died within 28 days of ICU admission. Patient-level risk factors for AKI-RRT included CKD, men, non-White race, hypertension, diabetes mellitus, higher body mass index, higher d-dimer, and greater severity of hypoxemia on ICU admission. Predictors of 28-day mortality in patients with AKI-RRT were older age, severe oliguria, and admission to a hospital with fewer ICU beds or one with greater regional density of COVID-19. At the end of a median follow-up of 17 days (range, 1-123 days), 403 of the 637 patients (63.3%) with AKI-RRT had died, 216 (33.9%) were discharged, and 18 (2.8%) remained hospitalized. Of the 216 patients discharged, 73 (33.8%) remained RRT dependent at discharge, and 39 (18.1%) remained RRT dependent 60 days after ICU admission. CONCLUSIONS: AKI-RRT is common among critically ill patients with COVID-19 and is associated with a hospital mortality rate of >60%. Among those who survive to discharge, one in three still depends on RRT at discharge, and one in six remains RRT dependent 60 days after ICU admission.


Subject(s)
Acute Kidney Injury/therapy , Acute Kidney Injury/virology , COVID-19/complications , Critical Care , Renal Replacement Therapy , Acute Kidney Injury/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/therapy , Cohort Studies , Female , Hospital Mortality , Hospitalization , Humans , Incidence , Logistic Models , Male , Middle Aged , Risk Factors , Survival Rate , United States , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL